Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, s1(y)) -> s1(y)
s1(+2(0, y)) -> s1(y)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, s1(y)) -> s1(y)
s1(+2(0, y)) -> s1(y)
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
+12(x, s1(y)) -> +12(x, y)
+12(x, s1(y)) -> S1(+2(x, y))
S1(+2(0, y)) -> S1(y)
The TRS R consists of the following rules:
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, s1(y)) -> s1(y)
s1(+2(0, y)) -> s1(y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
+12(x, s1(y)) -> +12(x, y)
+12(x, s1(y)) -> S1(+2(x, y))
S1(+2(0, y)) -> S1(y)
The TRS R consists of the following rules:
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, s1(y)) -> s1(y)
s1(+2(0, y)) -> s1(y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S1(+2(0, y)) -> S1(y)
The TRS R consists of the following rules:
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, s1(y)) -> s1(y)
s1(+2(0, y)) -> s1(y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be strictly oriented and are deleted.
S1(+2(0, y)) -> S1(y)
The remaining pairs can at least by weakly be oriented.
none
Used ordering: Combined order from the following AFS and order.
S1(x1) = S1(x1)
+2(x1, x2) = +2(x1, x2)
0 = 0
Lexicographic Path Order [19].
Precedence:
[S1, +2]
The following usable rules [14] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, s1(y)) -> s1(y)
s1(+2(0, y)) -> s1(y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
+12(x, s1(y)) -> +12(x, y)
The TRS R consists of the following rules:
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, s1(y)) -> s1(y)
s1(+2(0, y)) -> s1(y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be strictly oriented and are deleted.
+12(x, s1(y)) -> +12(x, y)
The remaining pairs can at least by weakly be oriented.
none
Used ordering: Combined order from the following AFS and order.
+12(x1, x2) = +11(x2)
s1(x1) = s1(x1)
Lexicographic Path Order [19].
Precedence:
[+^11, s1]
The following usable rules [14] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, s1(y)) -> s1(y)
s1(+2(0, y)) -> s1(y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.